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We propose a mean-field theory of sandpiles with dissipation introduced in a clear and physical way. We
obtain all exponents for our model by constructing a master equation and mapping the model into a branching
process. Two of the exponents are found to depend on a parameter relating the rate of dissipation to that of the
addition of sand grains to the system, whereas the others are uniy&sa63-651X97)07402-3

PACS numbeps): 64.60.Lx, 05.40+j

Bak, Tang, and Wiesenfe[d] introduced the idea of self- z—z—2 and we increase with probability the height of
organized criticalitf SOQ as a paradigm for the ubiquity of one randomly chosen site by 1 and with probabilitylthe
spatial and temporal fractals in nature. Since their pioneeringeights of two randomly chosen sites increased by<l is
work, many models of SOC have been proposed and studiedl measure of the dissipation and represents the probability
[2-8], analytically, numerically, and experimentally, but the for a site to be on the boundary of the system. The SOC state
first system shown to have SOC behavior—sandpiles—iS réached on first letting—0 and thene—0.

remains the most important example of SOC. In this paper The dynamics of avalanches is controlled by the average

we construct a mean-field theory of sandpiles. The meardUmber of sand grain®=(z). If © is greater than the criti-

field theory proposed by us is by no means the first meanc@l ValueOc, there will be a spontaneous flolavalanches

field theory of sandpilef9—11]. The first mean-field theory €VeN in the absence of the external fiéld _

of sandpiles was proposed by Tang and Bk who related One can !ntr'odu'ce a number of exponents for this model

SOC to conventional critical phenomena. They obtained thé912: the distributions of avalanche siz8g(s) and dura-

master equation for their model and deduced several expdionSDPi(t) are_kt:))oth described by power ladg(s)~s ™"~

nents from it, and then used scaling laj#€] to get the rest and D(t)~t °, the cutoff in  the avalanche size

of the exponents. The latest development in the mean-fieldco™[Oc=O|" ™, and the cutoff in the avalanche duration

theory of sandpiles is due to Zapperi, Lauritsen, and Stanleleo™|Oc =6l " The duration of an avalancheis related to

[10], who introduced the notion of a self-organized branchtS Sizes through the dynamical exponefit3] z: t~s”. To

ing process, which allowed them to explicitly include dissi- 9'V& Precise meaning to this statement, one can consider the

pation that was absent in the model of Tang and Bak and, a%ondltlopal probability for f;n avalanche to have duratipif

we show later, is crucial for reaching the SOC state. In ouft Nas sizes: F’(t|S)Z=f(t/S )/t. [Note that the exact corre-

approach, we attempt to combine the best from the previougPondence  t=s" ~ has ~ the  scaling  form

approaches: we are able to obtain a master equation for ofi({/S) = 8(t—s9)=&1-s7t)/t.] The average duration of

model and map it to a branching process. As a refilye  avalanches(t) that have sizes is (t)=/qt P(t[s)dt~s"

introduce dissipation in our model in a clear and physica®ne can relate z to other components: Dy(t)

way, (i) we are able to obtain all exponents for our model=J5Ds(S)P(|s)ds~t*" 722 and thusb=1+(7—2)/z or

analytically, (iii) strikingly, some of the exponents are non- Z=(7—2)/(b—1). From the definitions ofr and» one gets

universal and depend on a parameter that characterizes the vo.

relationship between the rates of dissipation and the external The master equation for this model is, as usual, a balance

addition of sand grains, an@) the universal exponents ob- €equation, which states that the change in the number of sites

tained by us coincide with those obtained previoydly11.  of a given heighti equals the number of sites that change
We consider the following variant of the usual sandpiletheir height toi minus the number of sites of heightwhich

model: on each oN sites we define an integer numhkwr, ~ change their height fromto some other value:

which represents the number of sand grains at this site. Every %

time step eachz; increases by 1 with probabilith<1: ) Pt — , (Y P. .

z—z+1. If z exceedsz,=1, then at the next time step Pilt+1)=RilY) jz'o [P OTaO=POTy (O] ()
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whereP;(t) is the fraction of sites of heightat timet and  thent.,=t, and v=1/u. Thusv=min(1,1/u). The u<1 case

T;; is the transition probability for any given site of height leads to exponents that are in agreement with previous re-
to change its height tp. If one makes an approximation that sults[9,10].

there are only sites with heights of 0, 1, 2, and 3 and that To obtain the values of other exponents we map this

P,<1 andP;<1, then the relevant;; are model to a branching process: we assume that at any time all
P; take on their steady-state values; thus the number of ac-
To1=T12=To1=Tz=hvo+(1-h)vy, tive sites(sites with two and more graipgs much smaller
than the total number of sitds. Under this assumption the
Toz=T1z=hvy+(1=h)vy, probability g, for a given active site to createactive sites
(0<I=2) at the next time step does not depend either on the
Toz=Tos=hvy, number of active sites present in the system or on time:
T20=Ta=(1=h)vo, Go=€(Po+P2)(1=h)vg+ (1= €)(Po+P2)%(1—h)vS,
T10=Ta0=0, A= e[ P+ (Po+ Po)(h+1-0v0)]+2(1= €)(Po+Py)
where vo=1—-A+A?%2, v,;=A—A? v,=A?%2, and A X (1—h)vo[P1+(Po+Py)(h+1—vg)],
=(2—¢€)(P2+Pa).
To calculate the transition probabilitif§; one starts by 0= (1= €)[P1+ (Py+Py)(h+1—vy)]%

noting that at every time step there areP2¢ P3)N grains

released as the result of toppling of the active sitesin this approximatior®=3+ 2h/e.

e(P,+ P3)N of these grains are carried out of the system In order to calculate the distribution of avalanche sizes,
and (2—€)(P,+ P3)N=AN grains are left. Thus we have we used the method of generating functions.plfis the
AN<N grains to be distributed amom{ sites. The probabil- probability to have an avalanche of sizethen the corre-
ity v; for a given site to receive exactiyout of the totalAN  sponding  generating ~ function is  defined as
grains is given by a binomial distributioniz(AiN)N"(l p(X)==_opx®. It satisfies the equatiofil4] p(x)=Xx[dq
—1/N)AN-1_y, rapidly decreases withand we neglectath;  +d1p(X) +d2p(x)?], which gives us

with i>2. The remaining; can be approximated by a Pois- g ) )

son distribution (on  assuming that AN>1) Dy(s)=ps~s~¥%exp —[€*/4+4(h/e)?]s}. 2
vi=exp(—A)A'/il. BecauseA<1 we can expand exp A) 5

and obtain the above results for. There are two possibili- Thus 7=3 ando=max(1/2u/2). _
ties for a site with no grains at a given time step to become a In order to obtauj.the distribution of avalqnche duratlons,
site with one grain at the next time stéj:it can receive one €t a; be the probability that the avalanche will be ovet ior
grain from the external fieldn) and receive nothing from fewer times steps. One can write

other sites ¢) or (ii) it can receive nothing from the exter-

— 2
nal field (1—h) and receive one grain from one of the other at+1= ot d1ar+ 023 ©)
sites @4). Thus Tg;=hvg+(1—h)v,. Similar consider- . . . o )
ations allow one to obtain all othd; . Equation(3) can be easily understood: if the initial active

Note also thaD =(z;)= P, +2P,+3P5. In this approxi- site does not crgate any active sites'gt the next time stgp, then
mation one finds that in the steady state;=3 th_e avalanch_e IS Over, .”_“? prob_ablllty of this eventis
+0(h?/€?), Py=hle+0O(h?/e?)<1, P3=0(h¥e?)<P,, Wlth pr(_)babmty g, the initial active sites creates just one
and© = 1+ 2h/e+O(h?/ %), provided that/e— 0. The in- active site; then we can consider that created site an initial

’ site for another avalanche, which should dietior fewer

troduction of higher-order termB,, etc., brings in correc- > ! . g
9 4 g time steps in order for the original avalanche to dig inl

tions of order {i/€)”. The result forP, can be easily under- or fewer time steps. Finally, with probability,, the initial

S.tOOd: the T‘“mber of sand grains entering th_e system at eVely.ie site creates two active sites leading to two avalanches
time step ish and the number of sand grains leaving thethat should both die it or fewer time steps

system at every time step &P,; in the steady state these
two numbers should be equal. It is important to note that th‘?ive sites created by an active site during one time step
presence of aa>h is crucial for reaching the steady state. If m=q,+2d,, one can rewrite Eq(3) as

e<h, then the dissipation cannot balance the incoming flux ! 2
and the system will accumulate sand without reaching the
steady state. These considerations show thahth® limit
must be taken before the—0 limit. P "

The state of the system is determined by specifying twoWhICh In the critical staterg=1) leads to
variablesP; andP, (Py=1-P;—P, andP;<P,). One can
consider relaxation of those variables towards their steady-
state values. From the master equation one findsRhand
P, relax independently, with characteristic times=e/4h
andt,=2/e. The cutoff in the avalanche duratiohg is the
smaller oft; andt,. If we assume that~ e!™#, with x>0,
then© =3, if u<1, thent,=t, andv=1, whereas ifu>1, =exfd —(e/l2—2h/e)t], (6)

On introducingr,=1—a; and the average number of ac-

M7= M=ol g, 4

Dit)=ay—a;_1=r 1—r~t7> ®)

otherwise

Dit)y=a—a—1=r_1—ry—exg —(1-mjt]
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giving v=min(1,1/u), b=2, and z=(7—2)/(b—1)=vo
=1

5.
All the exponents agree with previous estimaf@s11]

on settingu=<1. To our knowledge, the nonuniversal values

of v and o are a new feature of our calculation.
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found to be universal, while- and v depend on a parameter
that relates the dissipation rate to the rate characterizing the
addition of sand grains.

Note addedAfter this work was completed, we learned of
similar calculations by Lauritsen, Zapperi, and Starl&y]

To summarize, we have presented a mean-field theory offho used somewhat different techniques. The key difference
a sandpile model with dissipation introduced explicitly andbetween their work and ours is that they do not introduce the
in a physical way. We obtained all exponents for this modeparameteh. Our results are in accord with theirs where there
by constructing a master equation for it and by mapping thds overlap.
model to a branching process. The expon.ents, obtajned by us This work was supported by grants from NSF and NASA,
for a range of parameter values, agree with mean-field expQpe petroleum Research Fund administered by the American

nents obtained by different means previou@y-11: = 3,
b=2, o= 3, v=1, andz= 3. The values ofr, b, andz are

Chemical Society, and the Center for Academic Computing
at The Pennsylvania State University.
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