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We propose a mean-field theory of sandpiles with dissipation introduced in a clear and physical way. We
obtain all exponents for our model by constructing a master equation and mapping the model into a branching
process. Two of the exponents are found to depend on a parameter relating the rate of dissipation to that of the
addition of sand grains to the system, whereas the others are universal.@S1063-651X~97!07402-3#
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Bak, Tang, and Wiesenfeld@1# introduced the idea of self
organized criticality~SOC! as a paradigm for the ubiquity o
spatial and temporal fractals in nature. Since their pionee
work, many models of SOC have been proposed and stu
@2–8#, analytically, numerically, and experimentally, but th
first system shown to have SOC behavior—sandpile
remains the most important example of SOC. In this pa
we construct a mean-field theory of sandpiles. The me
field theory proposed by us is by no means the first me
field theory of sandpiles@9–11#. The first mean-field theory
of sandpiles was proposed by Tang and Bak@9#, who related
SOC to conventional critical phenomena. They obtained
master equation for their model and deduced several e
nents from it, and then used scaling laws@12# to get the rest
of the exponents. The latest development in the mean-fi
theory of sandpiles is due to Zapperi, Lauritsen, and Stan
@10#, who introduced the notion of a self-organized branc
ing process, which allowed them to explicitly include dis
pation that was absent in the model of Tang and Bak and
we show later, is crucial for reaching the SOC state. In
approach, we attempt to combine the best from the prev
approaches: we are able to obtain a master equation for
model and map it to a branching process. As a result,~i! we
introduce dissipation in our model in a clear and physi
way, ~ii ! we are able to obtain all exponents for our mod
analytically, ~iii ! strikingly, some of the exponents are no
universal and depend on a parameter that characterize
relationship between the rates of dissipation and the exte
addition of sand grains, and~iv! the universal exponents ob
tained by us coincide with those obtained previously@9–11#.

We consider the following variant of the usual sandp
model: on each ofN sites we define an integer numberzi ,
which represents the number of sand grains at this site. E
time step eachzi increases by 1 with probabilityh!1:
zi→zi11. If zi exceedszc51, then at the next time ste
551063-651X/97/55~2!/1998~3!/$10.00
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zi→zi22 and we increase with probabilitye the height of
one randomly chosen site by 1 and with probability 12e the
heights of two randomly chosen sites increased by 1.e!1 is
a measure of the dissipation and represents the probab
for a site to be on the boundary of the system. The SOC s
is reached on first lettingh→0 and thene→0.

The dynamics of avalanches is controlled by the aver
number of sand grainsU5^zi&. If U is greater than the criti-
cal valueUc , there will be a spontaneous flow~avalanches!
even in the absence of the external fieldh.

One can introduce a number of exponents for this mo
@9,12#: the distributions of avalanche sizesDs(s) and dura-
tionsDt(t) are both described by power lawsDs(s);s2t11

and Dt(t);t2b, the cutoff in the avalanche siz
sco;uUc2Uu21/s, and the cutoff in the avalanche duratio
tco;uUc2Uu2n. The duration of an avalanchet is related to
its sizes through the dynamical exponent@13# z: t;sz. To
give precise meaning to this statement, one can conside
conditional probability for an avalanche to have durationt, if
it has sizes: P(tus)5 f (t/sz)/t. @Note that the exact corre
spondence t5sz has the scaling form
P(tus)5d(t2sz)5d~12sz/t)/t.# The average duration o
avalancheŝ t& that have sizes is ^t&5*0

`t P(tus)dt;sz.
One can relate z to other components: Dt(t)
5*0

`Ds(s)P(us)ds;t (22t2z)/z and thusb511(t22)/z or
z5(t22)/(b21). From the definitions ofs andn one gets
z5ns.

The master equation for this model is, as usual, a bala
equation, which states that the change in the number of s
of a given heighti equals the number of sites that chan
their height toi minus the number of sites of heighti , which
change their height fromi to some other value:

Pi~ t11!2Pi~ t !5(
j50

`

@Pj~ t !Tji ~ t !2Pi~ t !Ti j ~ t !#, ~1!
1998 © 1997 The American Physical Society
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wherePi(t) is the fraction of sites of heighti at time t and
Ti j is the transition probability for any given site of heighti
to change its height toj . If one makes an approximation tha
there are only sites with heights of 0, 1, 2, and 3 and t
P2!1 andP3!1, then the relevantTi j are

T015T125T215T325hv01~12h!v1 ,

T025T135hv11~12h!v2 ,

T035T235hv2 ,

T205T315~12h!v0 ,

T105T3050,

where v0512A1A2/2, v15A2A2, v25A2/2, and A
5(22e)(P21P3).

To calculate the transition probabilitiesTi j one starts by
noting that at every time step there are 2(P21P3)N grains
released as the result of toppling of the active sit
e(P21P3)N of these grains are carried out of the syste
and (22e)(P21P3)N5AN grains are left. Thus we hav
AN!N grains to be distributed amongN sites. The probabil-
ity v i for a given site to receive exactlyi out of the totalAN
grains is given by a binomial distributionv

i
5( i

AN)N2 i(1

21/N)AN2 i . v i rapidly decreases withi and we neglect allv i
with i.2. The remainingv i can be approximated by a Poi
son distribution ~on assuming that AN@1)
v i5exp~2A!Ai /i !. BecauseA!1 we can expand exp~2A!
and obtain the above results forv i . There are two possibili-
ties for a site with no grains at a given time step to becom
site with one grain at the next time step:~i! it can receive one
grain from the external field (h) and receive nothing from
other sites (v0) or ~ii ! it can receive nothing from the exte
nal field (12h) and receive one grain from one of the oth
sites (v1). Thus T015hv01(12h)v1. Similar consider-
ations allow one to obtain all otherTi j .

Note also thatU5^zi&5P112P213P3. In this approxi-
mation one finds that in the steady stateP15

1
2

1O(h2/e2), P25h/e1O(h2/e2)!1, P35O(h2/e2)!P2,
andU5 1

212h/e1O(h2/e2), provided thath/e→0. The in-
troduction of higher-order termsP4, etc., brings in correc-

tions of order (h/e)3. The result forP2 can be easily under
stood: the number of sand grains entering the system at e
time step ish and the number of sand grains leaving t
system at every time step iseP2 ; in the steady state thes
two numbers should be equal. It is important to note that
presence of ane.h is crucial for reaching the steady state.
e,h, then the dissipation cannot balance the incoming fl
and the system will accumulate sand without reaching
steady state. These considerations show that theh→0 limit
must be taken before thee→0 limit.

The state of the system is determined by specifying t
variablesP1 andP2 (P0512P12P2 andP3!P2!. One can
consider relaxation of those variables towards their stea
state values. From the master equation one finds thatP1 and
P2 relax independently, with characteristic timest15e/4h
and t252/e. The cutoff in the avalanche durationstco is the
smaller oft1 andt2 . If we assume thath;e11m, with m.0,
thenUc5

1
2, if m<1, thentco5t1 andn51, whereas ifm.1,
t
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then tco5t2 andn51/m. Thusn5min~1,1/m!. Them<1 case
leads to exponents that are in agreement with previous
sults @9,10#.

To obtain the values of other exponents we map t
model to a branching process: we assume that at any tim
Pi take on their steady-state values; thus the number of
tive sites~sites with two and more grains! is much smaller
than the total number of sitesN. Under this assumption the
probability ql for a given active site to createl active sites
~0<l<2! at the next time step does not depend either on
number of active sites present in the system or on time:

q05e~P01P2!~12h!v01~12e!~P01P2!
2~12h!2v0

2,

q15e@P11~P01P2!~h112v0!#12~12e!~P01P2!

3~12h!v0@P11~P01P2!~h112v0!#,

q25~12e!@P11~P01P2!~h112v0!#
2.

In this approximationU5 1
212h/e.

In order to calculate the distribution of avalanche siz
we used the method of generating functions. Ifrs is the
probability to have an avalanche of sizes, then the corre-
sponding generating function is defined
r(x)5(s50

` rsx
s. It satisfies the equation@14# r(x)5x@q0

1q1r(x)1q2r(x)
2#, which gives us

Ds~s![rs;s23/2exp$2@e2/414~h/e!2#s%. ~2!

Thust5 5
2 ands5max(1/2,m/2).

In order to obtain the distribution of avalanche duration
let at be the probability that the avalanche will be over int or
fewer times steps. One can write

at115q01q1at1q2at
2. ~3!

Equation~3! can be easily understood: if the initial activ
site does not create any active sites at the next time step,
the avalanche is over; the probability of this event isq0 .
With probability q1 the initial active sites creates just on
active site; then we can consider that created site an in
site for another avalanche, which should die int or fewer
time steps in order for the original avalanche to die int11
or fewer time steps. Finally, with probabilityq2 , the initial
active site creates two active sites leading to two avalanc
that should both die int or fewer time steps.

On introducingr t512at and the average number of a
tive sites created by an active site during one time s
m5q112q2 , one can rewrite Eq.~3! as

r t115mrt2q2r t
2, ~4!

which in the critical state (m51) leads to

Dt~ t ![at2at21[r t212r t;t22, ~5!

otherwise

Dt~ t ![at2at21[r t212r t;exp@2~12m!t#

5exp@2~e/222h/e!t#, ~6!
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giving n5min~1,1/m!, b52, and z5(t22)/(b21)5ns
5 1

2 .
All the exponents agree with previous estimates@9–11#

on settingm<1. To our knowledge, the nonuniversal valu
of n ands are a new feature of our calculation.

To summarize, we have presented a mean-field theor
a sandpile model with dissipation introduced explicitly a
in a physical way. We obtained all exponents for this mo
by constructing a master equation for it and by mapping
model to a branching process. The exponents, obtained b
for a range of parameter values, agree with mean-field ex
nents obtained by different means previously@9–11#: t5 5

2,
b52, s5 1

2, n51, andz5 1
2. The values oft, b, andz are
, T
of

l
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us
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found to be universal, whiles andn depend on a paramete
that relates the dissipation rate to the rate characterizing
addition of sand grains.

Note added. After this work was completed, we learned
similar calculations by Lauritsen, Zapperi, and Stanley@15#
who used somewhat different techniques. The key differe
between their work and ours is that they do not introduce
parameterh. Our results are in accord with theirs where the
is overlap.
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